On the Linear Convergence of Descent Methods for Convex Essentially Smooth Minimization *
نویسنده
چکیده
Consider the problem of minimizing, over a polyhedral set, the composition of an affine mapping with a strictly convex essentially smooth function. A general result on the linear convergence of descent methods for solving this problem is presented. By applying this result, the linear convergence of both the gradient projection algorithm of Goldstein and Levitin and Polyak, and a matrix splitting algorithm using regular splitting, is established. The results do not require that the cost function be strongly convex or that the optimal solution set be bounded. The key to the analysis lies in a new error bound for estimating the distance from a feasible point to the optimal solution set. Key words, linear convergence, differentiable minimization, gradient projection, matrix splitting, coordinate descent AMS(MOS) subject classifications. 49, 90
منابع مشابه
Convergence Analysis of the Approximate Proximal Splitting Method for Non-Smooth Convex Optimization
Consider a class of convex minimization problems for which the objective function is the sum of a smooth convex function and a non-smooth convex regularity term. This class of problems includes several popular applications such as compressive sensing and sparse group LASSO. In this thesis, we introduce a general class of approximate proximal splitting (APS) methods for solving such minimization...
متن کاملLinear Convergence of Descent Methods for the Unconstrained Minimization of Restricted Strongly Convex Functions
Linear convergence rates of descent methods for unconstrained minimization are usually proven under the assumption that the objective function is strongly convex. Recently it was shown that the weaker assumption of restricted strong convexity suffices for linear convergence of the ordinary gradient descent method. A decisive difference to strong convexity is that the set of minimizers of a rest...
متن کاملVR-SGD: A Simple Stochastic Variance Reduction Method for Machine Learning
In this paper, we propose a simple variant of the original SVRG, called variance reduced stochastic gradient descent (VR-SGD). Unlike the choices of snapshot and starting points in SVRG and its proximal variant, Prox-SVRG, the two vectors of VR-SGD are set to the average and last iterate of the previous epoch, respectively. The settings allow us to use much larger learning rates, and also make ...
متن کاملA Coordinate Gradient Descent Method for Nonsmooth Nonseparable Minimization
This paper presents a coordinate gradient descent approach for minimizing the sum of a smooth function and a nonseparable convex function. We find a search direction by solving a subproblem obtained by a second-order approximation of the smooth function and adding a separable convex function. Under a local Lipschitzian error bound assumption, we show that the algorithm possesses global and loca...
متن کاملOn the Complexity Analysis of Randomized Block-Coordinate Descent Methods
In this paper we analyze the randomized block-coordinate descent (RBCD) methods proposed in [11, 15] for minimizing the sum of a smooth convex function and a blockseparable convex function, and derive improved bounds on their convergence rates. In particular, we extend Nesterov’s technique developed in [11] for analyzing the RBCD method for minimizing a smooth convex function over a block-separ...
متن کامل